

Customer: Emiswap
Date: April 6th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Emiswap.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token, Token sale, Exchange, Exchanges aggregator.
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/EMISWAP-COM/emiswap
Commit THIRD REVIEW COMMIT: 329B5031A362EDD30B2B6470AFDCAD88CB3727E2

FOURTH REVIEW COMMIT: A6A94FFFAA95C0C761DEF8F60C77CE60199A3032
Deployed
contract

Timeline 04 DEC 2020 – 20 JAN 2021
Changelog 09 DEC 2020 – INITIAL AUDIT

23 DEC 2020 – SECOND REVIEW
21 JAN 2021 – THIRD REVIEW
18 FEB 2021 – FOURTH REVIEW
06 APR 2021 – REPORT UPDATE

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 8

AS-IS overview.. 9

Conclusion... 36

Disclaimers.. 37

Introduction

Hacken OÜ (Consultant) was contracted by Emiswap (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted between
December 4th, 2020 – December 9th, 2020.

The second review conducted on December 23rd, 2020.

The third review conducted on January 21, 2021.

The fourth review conducted on February 18, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit a6a94fffaa95c0c761def8f60c77ce60199a3032
Files:

CrowdSale.sol
EmiFactory.sol
EmiPrice.sol
EmiReferral.sol
EmiRouter.sol
Emiswap.sol
EmiVamp.sol
EmiVault.sol
EmiVesting.sol
EmiVoting.sol
ESW.sol
VotableProxyAdmin.sol
EmiswapLib.sol
Priviledgeable.sol
ProxiedERC20.sol
Sqrt.sol
TransferHelper.sol
UniERC20.sol
Timelock.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts
contained issues that should be fixed. Four iterations of the
review were done, during this engagement, many fixes were applied
to the code, some business logic was change. Based on the above
and the importance of a product we recommend doing 2nd independent
Smart Contract audit.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 critical 6 high, 9 medium, 4 low and 4
informational issues during the audit.

After the second review, the code contains 1 critical, 3 high, 2
medium, 4 low, and 3 informational issues.

Insecure Poor secured Secured Well-secured

You are here

After the third review, the code contains 4 critical, 8 high, 2
medium and 5 low severity issues.

After the fourth review, the code contains 0 critical, 0 medium,
and 6 low severity issues.

Notice: the overall low-quality development of custom contracts
can lead to unexpected, hidden errors.

Notice 2: additional reviews do not include a full audit of the
provided code. As soon as Emi contracts reviewed 4 times, we may
not guaranty their secureness.

Notice 3: tests are failing in the latest version of the code.

Graph 1. The distribution of vulnerabilities after the first review.

Graph 2. The distribution of vulnerabilities after the second review.

Medium
36%

Low
16%

Informational
16%

Critical
8%

High
24%

Medium Low Informational Critical High

Medium
15%

Low
31%

Informational
23%

Critical
8%

High
23%

Medium Low Informational Critical High

Graph 3. The distribution of vulnerabilities after the third review.

Graph 4. The distribution of vulnerabilities after the fourth review.

High
42%

Medium
11%

Low
26%

Critical
21%

High Medium Low Critical

Critical
0%

Medium
0%

Low
100%

Critical Medium Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

CrowdSale.sol

Description

CrowdSale is a contract used for the token crowdsale.

Imports

CrowdSale contract has the following imports:

• @openzeppelin/contracts/math/SafeMath.sol
• @openzeppelin/contracts/proxy/Initializable.sol
• @openzeppelin/contracts/token/ERC20/IERC20.sol
• @openzeppelin/contracts/token/ERC20/SafeERC20.sol
• ./interfaces/IEmiReferral.sol
• ./interfaces/IESW.sol
• ./interfaces/IERC20Detailed.sol
• ./uniswapv2/interfaces/IUniswapV2Factory.sol
• ./uniswapv2/interfaces/IUniswapV2Pair.sol
• ./libraries/Priviledgeable.sol

Inheritance

CrowdSale contract is Initializable and Priviledgeable.

Usages

CrowdSale contract has the following custom usages:

• SafeMath for uint256
• SafeMath for uint32
• SafeERC20 for IERC20

Structs

CrowdSale contract has the following data structures:

• Coin – stores coins allowed in sale and their info.

Enums

CrowdSale contract has no custom enums.

Events

CrowdSale contract has the following events:

• Buy

Modifiers

CrowdSale has following modifiers:

• crowdSaleworking – checks whether crowdsale is active.

Fields

CrowdSale contract has following constants:

• mapping(uint16 => Coin) internal _coins
• mapping(address => uint16) public coinIndex
• uint16 internal _coinCounter
• uint32 internal _ratePrecision
• address internal _token
• address internal _wethToken
• address internal _uniswapFactory
• address internal referralStore
• address payable public foundationWallet
• address public teamWallet
• address internal defRef
• string public codeVersion = "CrowdSale v1.0-18-g44fc1eb"
• uint256 public crowdSalePool = 40_000_000e18
• bool public isStoped

Functions

CrowdSale has following public functions:

• initialize
Description
Initializes the contract
Visibility
public
Input parameters

o address eswToken
o address uniswapFactory
o address referralStoreInput
o address wethToken
o address payable _foundationWallet
o address _teamWallet

Constraints
o `initializer` modifier.
o All input parameters could not be 0 addresses.

Events emit
None
Output
None

• updateParams
Description
Updates addresses.
Visibility
public
Input parameters

o address eswToken
o address uniswapFactory
o address referralStoreInput
o address wethToken
o address payable _foundationWallet
o address _teamWallet
o address _defRef

Constraints
o `onlyAdmin` modifier.
o All input parameters could not be 0 addresses.

Events emit
None
Output
None

• stopCrowdSale
Description
Changes status of the `isStoped` variable to a

`isStopedNewValue`.
Visibility
public
Input parameters

o bool isStopedNewValue
Constraints

o `onlyAdmin` modifier.
Events emit
None
Output
None

• setPoolsize
Description
Updates the `crowdSalePool` variable.
Visibility
public
Input parameters

o uint256 _newcrowdSalePoo
Constraints

o `onlyAdmin` modifier.
Events emit
None
Output
None

• updateParams
Description
Updates addresses.
Visibility
public
Input parameters

o address eswToken
o address uniswapFactory
o address referralStoreInput
o address wethToken
o address payable _foundationWallet
o address _teamWallet
o address _defRef

Constraints
o `onlyAdmin` modifier.
o All input parameters could not be 0 addresses.

Events emit
None
Output
None

• fetchCoin
Description
Adds a new token that can be accepted in the crowdsale.
Visibility
public
Input parameters

o address coinAddress
o uint32 rate
o uint8 status

Constraints
o `onlyAdmin` modifier.
o A token should not be added yet.

Events emit
None
Output
None

• setStatusByID
Description
Updates status of a token.

Visibility
public
Input parameters

o uint16 coinId
o uint8 status

Constraints
o `onlyAdmin` modifier.

Events emit
None
Output
None

• setRateByID
Description
Updates an exchange rate of a token.
Visibility
public
Input parameters

o uint16 coinId
o uint32 rate

Constraints
o `onlyAdmin` modifier.

Events emit
None
Output
None

• getToken, coinCounter, coin, coinRate, coinData,
getBuyCoinAmountByID
Description
Simple getter functions.

• presaleBulkLoad
Description
Uploads presale info.
Visibility
public
Input parameters

o address[] memory beneficiaries
o uint256[] memory tokens
o uint32[] memory sinceDate

Constraints
o `onlyAdmin` modifier.

Events emit
None
Output
None

• buyView
Description

Calculates a required incoming token amount to buy a
specified `amount` of ESW token or vise-versa.

Visibility
public
Input parameters

o address coinAddress
o uint256 amount
o bool isReverse

Constraints
None
Events emit
None
Output

o uint256 currentTokenAmount
o uint16 coinId
o uint256 coinAmount

• buy
Description
Buy ESW tokens.
Visibility
public
Input parameters

o address coinAddress
o uint256 amount
o address referralInput
o bool isReverse

Constraints
o Crowdsale should be active.
o `amount` should be greater than 0.

o `coinAddress` should be registered.

o The CrowdsaleLimit should not be exceeded.

Events emit
Emits the `Buy` event.
Output

 None

• buyWithETHView
Description
Calculates a required incoming ETH amount to buy a specified

`amount` of ESW token or vise-versa.
Visibility
public
Input parameters

o uint256 amount
o bool isReverse

Constraints

None
Events emit
None
Output

o uint256 currentTokenAmount
o uint256 coinA

• buyWithETH
Description
Buy ESW tokens for ETH.
Visibility
public
Input parameters

o address referralInput
o uint256 amount
o bool isReverse

Constraints
o Crowdsale should be active.
o A msg.value should be greater than 0.

o The CrowdsaleLimit should not be exceeded.

Events emit
Emits the `Buy` event.
Output

 None

ESW.sol

Description

ESW is an ERC-20 token.

Imports

ESW contract has the following imports:

• @openzeppelin/contracts/proxy/Initializable.sol
• ./interfaces/IEmiVesting.sol
• ./libraries/Priviledgeable.sol
• ./libraries/ProxiedERC20.sol

Inheritance

ESW contract is ProxiedERC20, Initializable and Priviledgeable

Usages

ESW contract has no custom usages.

Structs

ESW contract has no custom data structures.

Enums

ESW contract has no custom enums.

Events

ESW contract has no custom events.

Modifiers

ESW has the following modifiers:

• mintGranted – checks whether a massage sender has the minting
role.

Fields

ESW contract has following constants:

• address public dividendToken
• address public vesting
• uint256 internal _initialSupply
• mapping(address => uint256) internal _mintLimit
• mapping(address => bool) internal _mintGranted
• string public codeVersion = "ESW v1.0-18-g44fc1eb"

Functions

ESW has following public functions:

• initialize
Description
Initializes the contract.
Visibility
public
Input parameters
None
Constraints

o Can only be called once.
Events emit
None
Output
None

• grantMint
Description
Assigns the minting role.
Visibility

public
Input parameters

o address _newIssuer
Constraints

o Can only be called by the admin.
Events emit
None
Output
None

• revokeMint
Description
Revokes the minting role.
Visibility
public
Input parameters

o address _ revokeIssuer
Constraints

o Can only be called by the admin.
Events emit
None
Output
None

• setVesting
Description
Sets an address of the vesting contract.
Visibility
public
Input parameters

o address _ vesting
Constraints

o Can only be called by the admin.
Events emit
None
Output
None

• balanceOf2
Description
Returns the token balance plus balance locked on the vesting

contract.
Visibility
public
Input parameters

o address account
Constraints
None
Events emit

None
Output

o uint256
• balanceOf2

Description
Returns the token balance plus balance locked on the vesting

contract.
Visibility
public
Input parameters

o address account
Constraints
None
Events emit
None
Output

o uint256
• getMintLimit

Description
Returns a minting limit of an `account`.
Visibility
public view
Input parameters

o address account
Constraints

o `onlyAdmin` modifier.
Events emit
None
Output

o uint256
• setMintLimit

Description
Sets a minting limit of an `account`.
Visibility
public
Input parameters

o address account
o uint256 amount

Constraints
o `onlyAdmin` modifier.

Events emit
None
Output

 None

• mintAndFreeze

Description
Mints and freezes tokens.
Visibility
external
Input parameters

o address recipient
o uint256 amount
o uint256 category

Constraints
o ` mintGranted` modifier.

Events emit
None
Output

 None

• mintVirtualAndFreeze
Description
Freezes an `amount` of virtual tokens.
Visibility
external
Input parameters

o address recipient
o uint256 amount
o uint256 category

Constraints
o ` mintGranted` modifier.

Events emit
None
Output

 None

• mintVirtualAndFreezePresale
Description
Freezes an `amount` of virtual tokens bought during the

presale.
Visibility
external
Input parameters

o address recipient
o uint32 sinceDate
o uint256 amount
o uint256 category

Constraints
o ` mintGranted` modifier.

Events emit
None
Output

 None

• currentCrowdsaleLimit
Description
Returns a current crowd sale limit.
Visibility
external view
Input parameters
None
Constraints

 None
Events emit
None
Output

o uint256

EmiVesting.sol

Description

EmiVesting is a vesting contract.

Imports

EmiVesting contract has the following imports:

• @openzeppelin/contracts/token/ERC20/IERC20.sol
• @openzeppelin/contracts/math/SafeMath.sol
• @openzeppelin/contracts/token/ERC20/SafeERC20.sol
• @openzeppelin/contracts/proxy/Initializable.sol
• ./interfaces/IEmiVesting.sol
• ./interfaces/IERC20Detailed.sol
• ./libraries/Priviledgeable.sol

Inheritance

EmiVesting contract is Initializable, Priviledgeable,
IEmiVesting.

Usages

EmiVesting contract has the following custom usages:

• SafeMath for uint
• SafeMath for uint256
• SafeERC20 for IERC20

Structs

EmiVesting contract has the following data structures:

• LockRecord
• CategoryRecord

Enums

EmiVesting contract has no custom enums.

Events

EmiVesting contract has the following custom events:

• TokensLocked
• TokensClaimed
• TokenChanged

Modifiers

EmiVesting has the no custom modifiers.

Fields

EmiVesting contract has following constants:

• uint32 constant QUARTER = 3 * 43776 minutes
• uint constant WEEK = 7 days
• uint constant CROWDSALE_LIMIT = 40000000e18
• uint constant CATEGORY_COUNT = 12
• uint32 constant VIRTUAL_MASK = 0x80000000
• uint32 constant PERIODS_MASK = 0x0000FFFF
• mapping(address => LockRecord[]) private _locksTable
• mapping(address => CategoryRecord[CATEGORY_COUNT]) private

_statsTable
• address public _token
• uint public version
• uint public currentCrowdsaleLimit
• string public codeVersion = "EmiVesting v1.0-18-g44fc1eb"

Functions

EmiVesting has following public functions:

• initialize
Description
Initializes the contract.
Visibility
public

Input parameters
o address _ESW

Constraints
o Can only be called once.

Events emit
None
Output
None

• getLock, getLocksLen, getStats
Description
Getter functions available only for admins.

• getNextUnlock, getMyLock, getMyLocksLen, getMyStats,
unlockedBalanceOf, balanceOf, balanceOfVirtual,
getCrowdsaleLimit
Description
Simple view functions.

• freeze
Description
Freezes an amount `tokens` of the EMS token for a

`beneficiary`.
Visibility
external
Input parameters

o address beneficiary
o uint tokens
o uint category

Constraints
o onlyAdmin modifier.
o `beneficiary` should not be zero.
o `tokens` value should be greater or equal to zero.
o The `currentCrowdsaleLimit` should not be exceeded.
o A `category` should exist.

Events emit
Emits the TokensLocked event.
Output
None

• freeze
Description
Freezes an amount `tokens` of the EMS token for a

`beneficiary`.
Visibility
external
Input parameters

o address beneficiary
o uint tokens
o uint category

Constraints
o onlyAdmin modifier.
o `beneficiary` should not be zero.
o `tokens` value should be greater or equal to zero.
o The `currentCrowdsaleLimit` should not be exceeded.
o A `category` should exist.

Events emit
Emits the `TokensLocked` event.
Output
None

• freezeBulk
Description
Freezes tokens in bulk.
Visibility
external
Input parameters

o address[] calldata beneficiaries
o uint[] calldata sinceDate
o uint[] calldata tokens
o uint category

Constraints
o onlyAdmin modifier.
o All input arrays should be of the same length.

Events emit
Emits multiple `TokensLocked` event.
Output
None

• freezeVirtual
Description
Freezes a virtual amount `tokens` of the EMS token for a

`beneficiary`.
Visibility
external
Input parameters

o address beneficiary
o uint tokens
o uint category

Constraints
o onlyAdmin modifier.
o `beneficiary` should not be zero.
o `tokens` value should be greater or equal to zero.
o The `currentCrowdsaleLimit` should not be exceeded.
o A `category` should exist.

Events emit
None

Output
None

• claim
Description
Claim available tokens.
Visibility
external
Input parameters
None
Constraints
None
Events emit
Emits the `TokensClaimed` event.
Output
bool

• changeToken
Description
Changes the token address.
Visibility
external
Input parameters

o address _newtoken
Constraints

o onlyAdmin modifier.
Events emit
Emits the `TokenChanged` event.
Output
bool

• transferAnyERC20Token
Description
Transfers accidentally locked tokens.
Visibility
public
Input parameters

o address tokenAddress
o address beneficiary
o uint tokens

Constraints
o onlyAdmin modifier.
o A `tokenAddress` should not be the EMS token address.

Events emit
None
Output
bool

EmiVoting.sol

Description

EmiVoting is a contract used for voting.

EmiVault.sol

Description

EmiVault purpose is a contract used for storing tokens. Allows
withdrawing tokens if a message is signed by the ORACLE address.

EmiFactory.sol

Description

EmiFactory is a factory used to deploy Emiswap pairs. Is a copy
of the MooniFactory of the Mooniswap with some minor changes.

Detailed description is not required because the contract is a
compy of another well known and audited contract.

Emiswap.sol

Description

Emiswap is a LP token. Is almost a copy of the Mooniswap with some
minor changes.

Detailed description is not required because the contract is a
copy of another well known and audited contract.

EmiReferral.sol

Description

EmiReferral is a contract used to store referrals.

Detailed description is not required because the contract is
simple, and its functionality is corrupted.

EmiVamp.sol

Description

EmiVamp is used to convert liquidity from Mooniswap and Uniswap.

Imports

EmiVamp contract has the following imports:

• @openzeppelin/contracts/proxy/Initializable.sol
• ./uniswapv2/interfaces/IUniswapV2Pair.sol

• ./uniswapv2/interfaces/IUniswapV2Factory.sol
• ./libraries/Priviledgeable.sol
• @openzeppelin/contracts/token/ERC20/SafeERC20.sol
• ./interfaces/IEmiRouter.sol
• ./interfaces/IEmiswap.sol
• ./libraries/TransferHelper.sol

Inheritance

EmiVamp contract is Initializable, Priviledgeable.

Usages

EmiVamp contract has the following custom usages:

• SafeERC20 for IERC20

Structs

EmiVamp contract has the following data structures:

• LPTokenInfo

Enums

EmiVamp contract has no custom enums.

Events

EmiVamp contract has the following custom events:

• Deposit

Modifiers

EmiVamp has the no custom modifiers.

Fields

EmiVamp contract has following constants:

• IERC20 [] public allowedTokens
• LPTokenInfo [] public lpTokensInfo
• string public codeVersion = "EmiVamp v1.0-18-g44fc1eb"
• IEmiRouter public ourRouter

Functions

EmiVamp has following public functions:

• initialize
Description
Initializes the contract.
Visibility
public
Input parameters

o address[] calldata _lptokens
o uint8[] calldata _types
o address _ourrouter

Constraints
o Can only be called once.
o Can only be called by an admin.

Events emit
None
Output
None

• getAllowedTokensLength, lpTokensInfoLength
Description
Simple getter functions.

• addAllowedToken
Description
Adds new entry to the list of allowed tokens
Visibility
external
Input parameters

o address _token
Constraints

o Can only be called by an admin.
o A `_token` should not be zero.

Events emit
None
Output
None

• addLPToken
Description
Adds new entry to the list of convertible LP-tokens
Visibility
external
Input parameters

o address _token
o uint16 _tokenType

Constraints
o Can only be called by an admin.
o A `_token` should not be zero.
o A `tokenType` should be less or equal to 2.

Events emit

None
Output
None

• changeRouter
Description
Change emirouter address.
Visibility
external
Input parameters

o address _newEmiRouter
Constraints

o onlyAdmin modifier
Events emit
None
Output
None

• deposit
Description
Convert third-party liquidity.
Visibility
public
Input parameters

o uint256 _pid
o uint256 _amount

Constraints
o ‘_pid’ should exist.
o Allowance should be set to at least `_amount`

Events emit
Emits the `Deposit` event.
Output
None

• isPairAvailable
Description
Checks an LP token pair availability.
Visibility
public view
Input parameters

o address _token0
o address _token1

Constraints
o _token0 and _token1 should not be 0 addresses.

Events emit
None
Output
None

• isPairAvailable

Description
Checks an LP token pair availability.
Visibility
external
Input parameters

o address _token0
o address _token1

Constraints
o _token0 and _token1 should not be 0 addresses.

Events emit
None
Output
unit16 – 0 if not available.

• transferAnyERC20Token
Description
Allows owners to transfer accidentally sent tokens.

EmiPrice.sol

Description

EmiPrice is used retrieve a token prices from 3 markets.

Imports

EmiPrice contract has the following imports:

• @openzeppelin/contracts/proxy/Initializable.sol
• @openzeppelin/contracts/math/SafeMath.sol
• ./uniswapv2/interfaces/IUniswapV2Factory.sol
• ./uniswapv2/interfaces/IUniswapV2Pair.sol
• ./libraries/Priviledgeable.sol

Inheritance

EmiPrice contract is Initializable, Priviledgeable.

Usages

EmiPrice contract has the following custom usages:

• SafeMath for uint
• SafeMath for uint256

Structs

EmiPrice contract has no custom data structures.

Enums

EmiPrice contract has no custom enums.

Events

EmiPrice contract has the following custom events.

Modifiers

EmiPrice has the no custom modifiers.

Fields

EmiPrice contract has following constants:

• address [3] public market
• address private _DAI
• string public codeVersion = "EmiPrice v1.0-18-g44fc1eb"

Functions

EmiPrice has following public functions:

• initialize
Description
Initializes the contract.
Visibility
public
Input parameters

o address _market1
o address _market2
o address _market3
o address _daitoken

Constraints
o Can only be called once.

Events emit
None
Output
None

• getCoinPrices
Description
Returns coin prices * 10e5
Visibility
external view
Input parameters

o address [] calldata _coins
o uint8 _market

Constraints
o A market should exists.

Events emit
None
Output

o uint[] memory prices
• changeDAI

Description
Changes the token.
Visibility
external
Input parameters

o address _daiToken
Constraints

o onlyAdmin modifier
o A `_daiToken` should not be zero.

Events emit
None
Output
None

• changeMarket
Description
Changes a market address.
Visibility
external
Input parameters

o uint8 idx
o address _market

Constraints
o onlyAdmin modifier
o A `_market` should not be zero.
o `idx` should be less than 3.

Events emit
None
Output
None

Timlock.sol

Description

Timelock is a copy of the SushiSwap Timelock contract.

Audit overview

 Critical

1. The ̀ addReferral` function of the ̀ EmiReferral` can be called
by anyone. The data can be corrupted.

We recommend restricting access to the `addReferral`
function.

Fixed before the second audit.

2. The `EmiVoting` contract is not actually designed for any
kind of a voting process. The positive voting result is
always set after an end period of a proposal.

Fixed before the third review.

3. The `burn` function of the `ESW` allows burning tokens of
any account without permissions.

Fixed before the fourth review.

4. The ̀ ESW` contract is not compliant with the ̀ IESW` interface
that is used in other contracts.

Fixed before the fourth review.

5. The `EmiVoting` contract relies on the `getPriorVotes`
function of the `ESW` token that is not implemented.

Fixed before the fourth review.

 High

1. The `presaleBulkLoad` function can be called an unlimited
number of times. Tokens supply manipulation is possible.

We recommend to disallow calling this function more than 1
time or to lock it forever when the load process is finished.

Fixed before the third review. Final presale upload date
added.

2. Tokens bought during a presale are `virtual`. Those tokens
cannot be claimed from the vesting contract.

Also, `virtual` balances are not described in the whitepaper
and their purpose is unknown.

We recommend describing this behavior in the whitepaper.

Partially fixed. Virtual tokens can now be claimed via the
`mint` function of the `EmiVesting` contract.

Fixed before the third review. Virtual tokens functionality
was removed.

3. Minters can be added to the ESW token unlimitedly. Token
supply manipulation is possible.

We recommend to allow minting only to those contracts that
are specified in the whitepaper.

Fixed before the third review.

4. The token total supply is not limited to 200,000,000 tokens
as it is stated in the whitepaper.

Fixed before the second audit.

5. The `changeToken` function of the `EmiVesting` contract
changes a token address but does guarantee a valid balance
of a new token.

Fixed before the second audit.

6. The `presaleBulkLoad` function does not use values from
`beneficiaries` input parameters.

We recommend removing this parameter or to use its values.

Fixed before the fourth review.

7. `freezePresale`, `freezeBulk`, `freezeVirtual` and
`freezeVirtualWithCrowdsale` functions are not actually
doing anything except validations and can be removed. Also,
as soon as no locks could be added, the contract itself can
be removed.

Fixed before the fourth review.

8. The `switchMinter` function of the `ESW` contract sets the
`minterChangeBlock` value to 35 blocks ahead that is
approximately 490 seconds. Not 24h as its stated.

Fixed before the fourth review.

9. The `mintSigned` function of the `ESW` may be used by owners
to mint any number of tokens. The `oracle` address may only
be a privately owned account that will have an ability to
sign messages.

Fixed before the fourth review.

10. The `_mint` function of the `ESW` is never used. Parent
function is used instead.

Fixed before the fourth review.

 Medium

1. The `freeze` function of the `EmiVesting` contract has
invalid validation `tokens >= 0`.

Fixed before the second audit.

2. The `EmiVault` contract is not finalized.

Fixed before the third review.

3. Assigning of the admin in the `initialize` function of the
`EmiVamp` contract is redundant because the function already
has the `onlyAdmin` modifier and can only be called by a
deployer.

Fixed before the second audit.

4. The `_getBalance` function of the `EmiVesting`s can return
both locked and total balances to reduce gas consumption.

Fixed before the second audit.

5. Consider moving of the `referralInput` validation in the
`_saveReferrals` function to the top of the function to
reduce gas consumption in a case when the `referralInput` is
0.

Fixed before the second audit.

6. The `freeze2` function of the `EmiVesting` has hardcoded
values.

Fixed before the second audit.

7. The `newUpgradeVoting` function of the `EmiVoting` contract
has no validation of the `_hash` parameter. A vote with the
same `_hash` can be passed into the function.

Fixed before the second audit.

8. Signatures recover functions are copied in multiple
contracts.

We recommend moving this code to a library.

Fixed before the forth audit.

 Low

1. The `defRef` variable of the CrowdSale is never used.

2. The ̀ deposit` and ̀ swap` functions are too long. We recommend
to decompose those functions to smaller ones.

3. The ̀ dividendToken` field of the ̀ ESW` contract is never used.

4. The `Initializable` inheritance in the `ESW` contract is
redundant. The ProxiedERC20 is responsible for this
functionality.

5. The presale end date is hardcoded in the `presaleBulkLoad`
function of the `CrowdSale` contract.

We recommend moving its value to a field and initialize it
in the constructor.

9. The `_mintGranted` of the `ESW` contract is redundant and
can be removed.

 Lowest / Code style / Best Practice

1. Multiple code style issues found by the static code analyzer.

2. The EmiVesting contract is not following the solidity code
style and naming guides.

Fixed before the third audit.

3. The EmiVesting contract has functions with names like
`_freeze` and `_freeze3`. It is a bad practice to name
functions in that way.

Fixed before the second audit.

4. `Swapped` and `Swapped2` events exists. We recommend merging
them.

Not an issue.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 2 critical 6 high, 9 medium, 4 low and 4
informational issues during the audit.

After the second review, the code contains 1 critical, 3 high, 2
medium, 4 low, and 3 informational issues.

After the third review, the code contains 4 critical, 8 high, 2
medium and 5 low severity issues.

After the fourth review, the code contains 0 critical, 0 medium,
and 6 low severity issues.

Notice: the overall low quality of custom contracts can lead to
extra hidden errors.

Notice 2: additional reviews do not include a full audit of the
provided code. As soon as Emi contracts reviewed 4 times, we may
not guaranty their secureness at all.

Notice 3: tests are failing in the latest version of the code.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

 ▪ Asset’s integrity ▪ No resulting tokens is
guaranteed when using
the CrowdSale contract.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

